Peptides as Radiopharmaceuticals: CMC Perspectives

Ravindra K. Kasliwal, Ph.D.

Office of New Drug Products (ONDP)

Office of Pharmaceutical Quality (OPQ)

Center for Drug Evaluation and Research (CDER)

Food and Drug Administration

Outline

- Definitions
- Radiopharmaceutical Drugs
 - Monoclonal Antibodies (Ab), including various modifications
 - Peptides and Proteins
- CMC related Considerations
 - Ab based radiopharmaceuticals
 - Peptide based radiopharmaceuticals
 - Starting materials for peptide, characterization, specifications and safety.

Focus of the talk

Chemically synthesized peptide radiopharmaceuticals (with < 40 amino acids, for injectable solutions)

Definitions

- Peptide any alpha amino acid polymer with specific defined sequence that is 40 amino acids or less in size
- Chemically synthesized polypeptide any alpha amino acid polymer that is (a) made entirely by chemical synthesis, and (b) is less than 100 amino acids
- Protein any alpha amino acid polymer with a defined sequence that is greater than 40 amino acids in size
- Biological product a virus, therapeutic serum, toxin, antitoxin, vaccine, blood, blood component or derivative, allergenic product, protein (except any chemically synthesized polypeptide, or analogous product

Radionuclide Examples

Radio- nuclide	⁸⁹ Zr	¹⁷⁷ Lu	⁶⁸ Ga	90 Y	¹¹¹ In	⁶⁴ Cu	131	¹⁸ F
Chemical Form	⁸⁹ Zr- oxalate	¹⁷⁷ LuCl ₃	⁶⁸ GaCl₃	⁹⁰ YCI ₃	¹¹¹ InCl ₃	⁶⁴ CuCl ₂	Na ¹³¹ I	Na ¹⁸ F
Production	Cyclotron	Reactor	Generator	Reactor	Cyclotron	Cyclotron	Reactor	Cyclotron
Half-Life	3.3 days	6.73 days	68 Minutes	2.67 days	2.8 days	12.7 Hrs.	8.02 days	109.77 minutes
Decay Product	89 Y	¹⁷⁷ Hf	⁶⁸ Zn	⁹⁰ Zr	¹¹¹ Cd	⁶⁴ Zn; ⁶⁴ Ni	¹³¹ Xe	¹⁸ F

SNMMI - June 2016 4

Ab Based Radiopharmaceuticals

- Radiolabeling of Ab with conjugated bifunctional chelate (e.g., with ⁹⁰Y, ⁸⁹Zr)
- Direct radiolabeling of Ab (e.g., with ¹³¹I)
- Other methods.

Antibody Based Radiopharmaceutical

SNMMI - June 2016

Ab Based Radiopharmaceuticals-Considerations

- Preservation of antibody characteristics:
 - Ab → Ab-Conjugate → Radiolabeled Ab.
 - Need adequate characterization (primary and higher order structures).
- Reproducibility of conjugation and radiolabeling reaction
 - Ab linker / chelate ratio
 - Characterization of site of attachment of linker / chelate
 - Ab radioisotope ratio; amount of naked antibody
- Impurity control at each stage of the process
 - e.g., free linker / chelate, other protein related impurities, aggregates, etc.
- IND Relationship of preclinical batches to the clinical batch(es)
- NDA Relationship of clinical batches to the commercial product

Peptide Radiopharmaceuticals

- Radiolabeling of peptide with conjugated bifunctional chelate (e.g., ⁸⁹Zr, ⁶⁸Ga, ¹¹¹ In)
 - Lyophilized powder formulation (for injection)
 - Solution formulation (injection)
- Direct radiolabeling of peptide (e.g., ¹⁸F, ¹³¹I)

Lyophilized Powder Formulation

Solution Formulation (Injection)

Direct Radiolabeling of Peptide

SNMMI - June 2016 11

Considerations For Starting Materials for Peptide

- Amino acids and derivatives
 - Name and address of the vendor
 - Specifications identification, assay, optical rotation, chemical and chiral purity, impurities, water content, microbial control (if appropriate).
 - Certificate of Analyses (COA) with test results.
 - Uncommon amino acid derivatives / use of novel synthesis method
 - Provide details of synthesis and characterization

Peptide and Peptide Conjugate Characterization

- Primary structure amino acid sequence (method of synthesis)
- Use a combination of analytical methods
 - Amino acid analysis, Edman degradation, MS, CD, fluorescence spectroscopy, fragment mapping, Ellman test (for disulfides), NMR, test to check chirality of the amino acid
- Higher order structure characterization and/or in vitro bioassay which is relevant to the mechanism of action may be needed.
- Information and characterization on potential peptide related impurities that can arise from peptide synthesis, cyclization (if cyclic peptide), and degradation (oxidation, deamidation, hydrolysis, isomerization)
 - Mainly for addressing immunogenicity concerns of certain peptide drugs
 - Important to choose a supplier carefully to minimize differences in impurities (e.g., D-amino acids)

Controls for Peptide and Peptide Conjugate

- Well characterized reference standard for peptide, peptide conjugate and drug substance (non-radioactive)
- Generally applicable tests;
 - Appearance
 - Peptide identity by amino acid analysis, HPLC/MS (identity of conjugate)
 - Purity, individual impurities (e.g., free conjugate molecule or related impurities), largest single unknown impurity, and total impurities by HPLC (HPLC method discriminative in detecting all potential related impurities- D amino acids)
 - Peptide assay by HPLC (or by quantitative aa analyses), Water content, residual solvents, inorganic impurities (ICP analysis)
 - Counter ion content, other relevant ionic impurities
 - Specific optical rotation
 - Bioassay
 - Microbiological attributes

Radiolabeled Peptide Attributes

- Appearance
- Identity Identity of radiolabeled peptide; Identity of radionuclide
- Identity of higher order structure and/or in vitro bioassay which is relevant to the mechanism of action
- Purity Radiochemical purity; Chemical purity
- Specific activity
 - Mass of radiolabeled peptide; mass of unlabeled peptide
- Assay of radioactivity
- pH
- Osmolality
- Impurities (specified, unspecified and total)
 - Peptide related impurities, degradation products, residual solvents (as appropriate)
- Identity and assay of functional excipients (e.g., antimicrobials, stabilizers)
- Microbiological attributes (sterility, bacterial endotoxins, etc.)
 SNMMI June 2016

Safety Considerations

- Immunogenicity
 - Peptide, proteins, antibodies
 - Related impurities
- Peptide excipient interactions safety and potency
- Guidance for Industry -Immunogenicity
 Assessment for Therapeutic Protein Products

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM338856.pdf

Conclusion

- Various radiopharmaceutical drugs
 - Peptides, Proteins, Antibodies
- Considerations for peptide radiopharmaceuticals
 - Starting materials
 - Characterization,
 - Attributes to test
 - Safety.

Thank-you

SUPPLEMENTARY MATERIAL

SNMMI - June 2016 18

Drug Master Files

- When referencing a DMF, you must include a letter of authorization (LOA) obtained from DMF holder in your application.
- Identify what the DMF is being referenced for.
 - Type II Drug substance, drug substance intermediate, and materials used in their preparation, or drug product
 - Examples Radionuclide (including generator produced radionuclide),
 Precursor, Synthesizer cassettes, etc.
 - Type III Packaging materials
 - Type IV Excipient, colorant, flavor, essence, or materials used in their preparation
 - Type V FDA accepted reference information (You must get permission to submit type V DMF)
 http://www.fda.gov/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/DrugMasterFilesDMFs/default.htm